MATH2040 Linear Algebra II

Tutorial 2

September 22, 2016

1 Examples:

Example 1

Find the expression of a linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, which is the reflection of \mathbb{R}^{2} about the line $y=5 x$.

Solution

Let α be the standard ordered basis of \mathbb{R}^{2} and $\beta=\left\{\binom{1}{5},\binom{-5}{1}\right\}$ to be another ordered basis of \mathbb{R}^{2}. Since T is the refection about the line $y=5 x$, so we have

$$
T\binom{1}{5}=\binom{1}{5} \quad \text { and } \quad T\binom{-5}{1}=\left(\begin{array}{c}
5 \\
-1
\end{array} .\right)
$$

Thus, $[T]_{\beta}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$.
By the change of coordinate formula,

$$
[T]_{\alpha}=\left[I_{V}\right]_{\beta}^{\alpha}[T]_{\beta}\left[I_{V}\right]_{\alpha}^{\beta} .
$$

Note, $\left[I_{V}\right]_{\beta}^{\alpha}=\left(\begin{array}{cc}1 & -5 \\ 5 & 1\end{array}\right)$ and $\left[I_{V}\right]_{\alpha}^{\beta}=\frac{1}{26}\left(\begin{array}{cc}1 & 5 \\ -5 & 1\end{array}\right)$
Therefore, the required expression is

$$
T(x, y)=[T]_{\alpha}\binom{x}{y}=\left(\begin{array}{cc}
1 & -5 \\
5 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{1}{26}\left(\begin{array}{cc}
1 & 5 \\
-5 & 1
\end{array}\right)\binom{x}{y}=\frac{1}{13}\binom{-12 x+5 y}{5 x+12 y} .
$$

Example 2

Find the eigenvalues and eigenvectors of $A=\left(\begin{array}{cccc}1 & -3 & 2 & -1 \\ -3 & 9 & -6 & 3 \\ 2 & -6 & 4 & -2 \\ -1 & 3 & -2 & 1\end{array}\right)$.
Solution The characteristic polynomial is $f(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}1-\lambda & -3 & 2 & -1 \\ -3 & 9-\lambda & -6 & 3 \\ 2 & -6 & 4-\lambda & -2 \\ -1 & 3 & -2 & 1-\lambda\end{array}\right|$.

After doing elementary row and column operations,

$$
\left.\begin{array}{|lccc}
\left\lvert\, \begin{array}{ccc}
1-\lambda & -3 & 2 \\
-1 \\
-3 & 9-\lambda & -6 \\
2 & -6 & 4-\lambda \\
-1 & 3 & -2
\end{array}\right. & 1-\lambda
\end{array}\left|\xrightarrow{\substack{-1 \\
R_{1} \rightarrow R_{1}+R_{4} \tag{2}\\
R_{2} \rightarrow R_{2}-3 R_{4} \\
R_{3} \rightarrow R_{3}+2 R_{4}}}\right| \begin{array}{cccc}
-\lambda & 0 & 0 & -\lambda \\
0 & -\lambda & 0 & 3 \lambda \\
0 & 0 & -\lambda & -2 \lambda \\
-1 & 3 & -2 & 1-\lambda
\end{array} \right\rvert\,
$$

Set $f(\lambda)=0$, we have $\lambda^{3}(15-\lambda)=0$, so the eigenvalues are $\lambda_{1}=0$ and $\lambda_{2}=15$.
To find the eigenvectors, we need to consider the eigenspaces of the two eigenvalues. And to simplify the computation, we could use the reduced form (1) of A.

$$
\left.\begin{array}{c}
\text { For } \lambda_{1}=0, E_{\lambda_{1}}=N\left(A-\lambda_{1} I\right)=N\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 3 & -2 & 1
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1 \\
2
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0 \\
-3
\end{array}\right)\right\} . \\
\text { For } \lambda_{2}=15, E_{\lambda_{2}}=N\left(A-\lambda_{2} I\right)=N\left(\begin{array}{ccc}
-15 & 0 & 0 \\
0 & -15 & -15 \\
0 & 0 & -15 \\
-1 & 3 & -30 \\
-14
\end{array}\right)=\operatorname{span}\left\{\left(\begin{array}{c}
-1 \\
3 \\
-2 \\
1
\end{array}\right)\right\}
\end{array}\right\} .
$$ a diagonal matrix.

2 Exercises:

Question 1 (Section 2.5 Q6(d)):
Let $A=\left(\begin{array}{ccc}13 & 1 & 4 \\ 1 & 13 & 4 \\ 4 & 4 & 10\end{array}\right)$ and $\beta=\left\{\left(\begin{array}{c}1 \\ 1 \\ -2\end{array}\right),\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$. Let $L_{A}: \mathbb{F}^{3} \rightarrow \mathbb{F}^{3}$ be a linear mapping defined by $L_{A}(x)=A x$ for each column vector $x \in \mathbb{F}^{3}$. Then, compute $\left[L_{A}\right]_{\beta}$ and find an invertible matrix Q such that $\left[L_{A}\right]_{\beta}=Q^{-1} A Q$.
Question 2 (Section 2.5 Q7):
In \mathbb{R}^{2}, let L be the line $y=m x$, where $m \neq 0$. Find an expression for $T(x, y)$, where
(a) T is the reflection of \mathbb{R}^{2} about L.
(b) T is the projection on L along the line perpendicular to L.
$\underline{\text { Question } 3}$ (Section 5.1 Q2(f)):
Let $V=M_{2 \times 2}(\mathbb{R})$ and $T: V \rightarrow V$ be defined by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}-7 a-4 b+4 c-4 d & b \\ -8 a-4 b+5 c-4 d & d\end{array}\right)$. If an ordered basis $\beta=\left\{\left(\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 2 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 2 & 0\end{array}\right),\left(\begin{array}{cc}-1 & 0 \\ 0 & 2\end{array}\right)\right\}$, compute $[T]_{\beta}$. Also, determine whether β is a basis consisting of eigenvectors of T.

Solution

(Please refer to the practice problem set 2.)

